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To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved
interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability,
simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a
new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks
from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown
that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups.

1. Introduction

In the last decade, high throughput techniques in experi-
mental biology produced a large amount of biological data
which usually can be modeled by large networks such as
metabolic networks, gene regulatory networks, and protein-
protein interaction (PPI) networks [1]. Analogous to biolog-
ical sequence comparison [2–4], comparing large biological
networks can improve our biological understanding of them.
Comparison of PPI networks is a well-studied area due to
the important roles of PPI networks. The main idea behind
comparison of PPI networks is to find evolutionary conserved
interaction modules which describes functional relevance.
Exact comparison of large PPI networks is aNP-hard problem
and there is no polynomial time algorithm for it. The NP-
hardness of this problem is based on the fact that this problem
can be reduced to the subgraph isomorphismproblem. In this
way, the exact comparison of PPI networks is computationally
infeasible, and PPI networks comparison is often addressed
by heuristic methods [5–7].

Several algorithms have been proposed for biological
network alignment. One of the first proposed network align-
ment algorithms is Path-Blast [8]. This algorithm finds high-
score conserved pathways. After that, Sharan et al. designed

Network-Blast [9] in order to identify conserved protein
complexes in multiple species. Koyuturk et al. devised an
evolution-based scoring scheme to detect conserved clusters,
called MaWISh (maximum weight induced subgraph) [10].
Flannick et al. proposed Graemlin as the first method to
detect conserved subnetworks of arbitrary structures with
progressive alignment method [11]. All these mentioned
algorithms are called local alignment algorithms owing to the
fact that they started to find subnetworks such as pathways
and protein complexes and expanded their search results to
obtain the feasible alignment. In local network alignment,
each protein may be mapped to several proteins. On the
other hand, global network alignment algorithm is defined
to detect the best overall mapping across all parts of the
input networks. IsoRank is the first global network alignment
algorithm aiming tomaximize the overallmatch between two
networks [12]. Flannick et al. extended Graemlin to global
network alignment by using a training set of known network
alignments to learn parameters for the scoring function.This
novel algorithm is called Graemlin 2.0 and is claimed to have
linear time complexity with the number of PPIs [13].The next
version of IsoRank, IsoRankN [14], uses Nibble-Page-Rank
algorithm [15] to align input networks locally and globally.
Tian and Samatova introduced a connected-components
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Figure 1: Two sample networks 𝐴 and 𝐵.

based algorithm, called HopeMap, for pairwise network
alignment with the focus on fast identification of maximal
conserved patterns [16]. After that, GRAAL [6] and H-
GRAAL [1] are presented as the global network alignment
algorithms based on seed-extend approaches and Hungarian
algorithm, respectively. Both of GRAAL and H-GRAAL
algorithms are capable of aligning any kind of network
owing to the fact that they are specifically designed based on
network structure and do not use sequence similarity data.
Observing that the size of true orthologs across species is
small comparing to the total number of proteins in all species,
Tian and Samatova presented a different approach based on
a precompiled list of homologs identified by KO terms [17].

In this paper, Pin-Align (protein interaction network
alignment) algorithm is introduced as a novel local network
alignment algorithm for aligning two protein-protein inter-
action networks. In Pin-Align, Hub Clustering and hierar-
chical clustering algorithms are applied in the heuristic and
dynamic programming phases in order to reduce time and
space complexity of the problem. Two different types of
scoring,Node-Scoring and Structural-Scoring, are used to find
the best local alignments. Node-Scoring is simply based on
BLAST bit score [18] and Structural-Scoring is based on the
importance of Bridges (Bridges are considerable edges, which
take part in most of the paths and consequently conserved
paths in the networks) in biological networks.

The Pin-Align algorithm is performed on the protein
interaction networks of Escherichia coli (E. coli), Salmonella
typhimurium (S. typhimurium), Caulobacter crescentus (C.
crescentus), human,mouse, yeast, andDrosophilamelanogaste
(fly) extracted from IntAct [19], DIP [20], and Stanford
Network database (SNDB) [21].The obtained results are com-
paredwith otherwell-known local alignment algorithmsNet-
workBLAST [9], MaWISh [10], Graemlin [11], and Graemlin
2.0 [13], in a way that Graemlin 2.0 compares its results,

because it is the onlymethod that compares results of all local
alignment tools against KEGG Ortholog (KO) groups [22].

2. Materials and Methods

Protein-protein interaction (PPI) network is defined as the
set of relationships among proteins. Here, a PPI network is
modeled by an undirected and weighted graph 𝐺 = (𝑉, 𝐸),
where nodes correspond to proteins and each weighted edge
specifies the probability that two proteins interact. For two
graphs 𝐺

1
= (𝑉
1
, 𝐸
1
) and 𝐺

2
= (𝑉
2
, 𝐸
2
) (such as two sample

networks𝐴 and 𝐵 in Figure 1), the goal of network alignment
is to identify possiblemappings whichmap vertices of𝐺

1
into

vertices of 𝐺
2
.

In addition, for each mapping, the corresponding set of
conserved edges is also identified. Mappings may be partial;
that is, they do not need to be defined for all the nodes of the
graphs. Each mapping implies a common subgraph between
the two graphs. When protein 𝑎

1
from graph𝐺

1
is mapped to

protein 𝑎
2
from graph 𝐺

2
, then 𝑎

1
and 𝑎

2
refer to the same

node in the common subgraph; the edges in the common
subgraph correspond to the conserved edges [23].

Pin-Align algorithm is a local network alignment algo-
rithm, mainly designed based on the dynamic program-
ming approach. To explain Pin-Align in more detail, first a
formal definition of local network alignment is presented.
Given two graphs 𝐺

1
(𝑉
1
, 𝐸
1
) and 𝐺

2
(𝑉
2
, 𝐸
2
), local alignment

LA
𝐺
1
,𝐺
2

(Sg
1
, Sg
2
,𝑀) is a triplet where Sg

1
and Sg

2
are the

subgraphs of 𝐺
1
and 𝐺

2
, respectively, and𝑀 is defined as the

mapping which aligns vertices of Sg
1
into vertices of Sg

2
. Two

sample local alignments of networks 𝐴 and 𝐵 of Figure 1 are
shown in Figure 2(a).

Following, the best local network alignment (BLA) is
defined as a function to obtain the best local alignment
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Figure 2: (a) Two local alignments of networks 𝐴 and 𝐵 of Figure 1. (b) Result of merging them.

Input: Graph 𝐺
1
(𝑉
1
, 𝐸
1
), Graph 𝐺

2
(𝑉
2
, 𝐸
2
) such that |𝑉

1
| = 𝑛

Output: Local alignment
(1) Define 𝑆 as an array of sets with length 𝑛

(2) 𝑆[1] = Set of all local alignments of size one
(3) for 𝑠𝑖𝑧𝑒 = 2 to 𝑛 do
(4) for 𝑖 = 1 to 𝑠𝑖𝑧𝑒 − 1 do
(5) 𝑗 = 𝑠𝑖𝑧𝑒 − 𝑖

(6) for 𝑘 = 1 to |𝑆[𝑖]| do
(7) for ℓ = 1 to |𝑆[𝑗]| do
(8) LA 𝐴 = 𝑘’th element of 𝑆[𝑖]
(9) LA 𝐵 = ℓ’th element of 𝑆[𝑗]
(10) 𝑆[𝑠𝑖𝑧𝑒] = 𝑆[𝑠𝑖𝑧𝑒]⋃𝑀𝑒𝑟𝑔𝑒(𝐴, 𝐵)

(11) end for
(12) end for
(13) end for
(14) end for
(15) returnThe LA with highest score among all LAs in 𝑆[𝑛]

Algorithm 1: Simple-Align algorithm.

for each subgraph of 𝐺
1
. The best local alignment of Sg

1

as a subgraph of 𝐺
1
with a subgraph of 𝐺

2
is shown by

BLA
𝐺
1
,𝐺
2

(Sg
1
), which represents a local alignment with the

highest score among all possible alignments between Sg
1
and

all possible subgraphs of 𝐺
2
that can be mapped to Sg

1
.

Now, a naive dynamic programming algorithm for net-
work alignment is demonstrated in the next subsection, and
later Pin-Align algorithm is presented.

2.1. Dynamic Programming Algorithm to Align PPI Networks.
In alignment of two weighted graphs 𝐺

1
and 𝐺

2
through

dynamic programming technique, we generate all LAs of size
one (subgraphs with a single vertex) in the first step. For
obtaining LAs of larger subgraphs of𝐺

1
, wemerge all possible

pairs of LA of smaller subgraphs. In other words, for each
subgraph of 𝐺

1
such as Sg

1
, there are several pairs of distinct

subgraphs (subgraphs with no common vertices) such as
(𝑇
1
, 𝑇
2
)where Sg

1
= 𝑇
1
∪𝑇
2
. Figure 2 demonstrated themerge

process of two sample local alignments of networks 𝐴 and
𝐵 of Figure 1. We produce all possible local alignments for

Sg
1
such as LA

𝐺
1
,𝐺
2

(Sg
1
, Sg
2
,𝑀) by merging every possible

local alignments of 𝑇
1
such as LA

𝐺
1
,𝐺
2

(𝑇
1
, 𝑇


1
,𝑀

) with every

possible local alignment of 𝑇
2
such as LA

𝐺
1
,𝐺
2

(𝑇
2
, 𝑇


2
,𝑀

).

This process is done iteratively, and finally all local alignments
of 𝐺
1
including BLA

𝐺
1
,𝐺
2

(𝐺
1
) are obtained.

Inspired by dynamic programming technique, we pro-
pose Simple-Align algorithm in Algorithm 1. This algorithm
can find all BLAs; however by considering time and memory
complexity, this algorithm is not feasible. To overcome
this, we use several heuristics to reduce memory and time
complexity and propose a new local alignment algorithm,
Pin-Align, in next section.

2.2. Pin-Align Algorithm. As explained, Pin-Align uses dy-
namic programming approach to solve the local network
alignment problem and overcome the deficiencies of dynamic
programming such as time and space complexity by applying
heuristic approach. The steps of the Pin-Align algorithm are
summarized as follows.
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(1) Partition the input graph 𝐺
1
into smaller clusters.

These clusters are dense subgraphs of 𝐺
1
. The parti-

tioning is done by using a new clustering algorithm
named Hub Clustering. Clusters obtained in this step
are named Hub-Clusters.

(2) For each𝐻𝑢𝑏-𝐶𝑙𝑢𝑠𝑡𝑒𝑟
𝑖
,

(a) create local alignments of size one with BLAST
bit score greater than 0, between vertices of
𝐻𝑢𝑏-𝐶𝑙𝑢𝑠𝑡𝑒𝑟

𝑖
and vertices of 𝐺

2
; local align-

ments obtained by this approach are named
Candidates (𝐶 = LA

𝐺
1
,𝐺
2

(Sg
1
, Sg
2
,𝑀) such that

Sg
1
is a subgraph of𝐻𝑢𝑏-𝐶𝑙𝑢𝑠𝑡𝑒𝑟

𝑖
with size one),

(b) collect all Candidates of subgraph Sg
1
of 𝐺
1

(such as 𝐶 = LA
𝐺
1
,𝐺
2

(Sg
1
, Sg
2
,𝑀)) in a new

set called Candidate-Collection and each Candi-
date-Collection is represented by its subgraph
of 𝐺
1
such as CC(Sg

1
); Candidate-Collections

obtained for single nodes of𝐺
1
are used as seeds

in Step 2(c),
(c) merge small Candidate-Collections (seeds) to

gain larger ones. Repeat this process con-
tinuously to achieve a Candidate-Collection
CC(𝐻𝑢𝑏-𝐶𝑙𝑢𝑠𝑡𝑒𝑟

𝑖
) as the final result of merging

process. Size of a Candidate or a Candidate-
Collection is defined by the number of ver-
tices of its subgraph of 𝐺

1
and cardinality of

a Candidate-Collection is defined as the num-
ber of its Candidates. In this step, each Can-
didate-Collection can be merged with several
Candidate-Collections and create Candidate-
Collections with larger size. For determining
which Candidate-Collections should be merged
together, a new hierarchical clustering is used as
a pattern of merging.

The Candidate-Collections of Hub-Clusters are named
Final-Candidate-Collections.

(3) Based on Final-Candidate-Collections, find final
alignment using similarity graph. This graph is a
special weighted bipartite graph where first and
second set of vertices of it are shown by 𝑉

1
and 𝑉

2

which are the set of vertices of 𝐺
1
and 𝐺

2
. The weight

of each edge is computed based on Final-Candidate-
Collections.

Flowchart of Pin-Align algorithm is presented in Figure 3 and
its details are explained by an example on two networks𝐴 and
𝐵 given in Figure 1.

In Step 1, in order to reduce the search space of the
problem, input graph 𝐺

1
= (𝑉
1
, 𝐸
1
) is clustered into some

dense subgraphs and Step 2 of the algorithm runs for each
dense subgraph separately. Generally PPI networks are sparse
graphs, but they have dense regions containing high degree
vertices named hubs. These regions usually contain protein
complexes; therefore conserved modules among different
PPIs usually exist in these regions.

To detect dense subgraphs in the graph 𝐺
1
, a novel

clustering algorithm, called Hub Clustering, is proposed. The

Start

Cluster G1 into smaller subgraphs cluster1, cluster2,
. . . , clusterk using hub clustering

i = 1

Create the Candidate-Collection of all vertices of clusteri (all
Candidate-Collections of clusteri with size one)

No

Yes

Yes

Merge each existing Candidate-Collection of
clusteri into another Candidate-Collection

Is the Final-Candidate-Collection
CC(clusteri) created?

i = i + 1

i ≤ k

Create similarity graph, based on Final-Candidate-Collections

Find final alignment from similarity graph

End

Figure 3: Flowchart of Pin-Align algorithm.

importance of hub nodes and density of subgraphs are two
major criteria for this clustering method. First, a portion
of highly connected vertices are selected as hub nodes. The
vertices degree of these nodes is greater than 95% of other
nodes. The hub nodes are considered as the center vertices
of dense regions of graph 𝐺

1
and are supposed to be initial

clusters. For other nodes of 𝐺
1
, each node is joint to the

nearest cluster (the cluster that contains its nearest hub). For
this aim, the length of each edge is defined as the negative
logarithm of its weight (from adjacency matrix), and then
Dijkstra shortest path algorithm [24] is used to find the
nearest cluster.Theobtained clusters are namedHub-Clusters.

In Step 2, each of Hub-Clusters of 𝐺
1
(obtained in Step 1)

is aligned to 𝐺
2
. As mentioned, Step 2(a) creates Candidates

of size one based on BLAST bit score of vertices of two graphs
𝐺
1
and 𝐺

2
(BLAST bit score is a normalized score which

is calculated by basic local alignment search tool, based on
sequence similarity [18]). Figure 4(a) shows BLAST bit scores
of proteins of networks 𝐴 and 𝐵.

After that, allCandidates of each vertex of𝐺
1
are collected

into a Candidate-Collection with size one as a seed in Step
2(b). In other words, Candidate-Collection of each vertex
of 𝐺
1
such as Sg

1
contains all Candidates for Sg

1
from 𝐺

2

which can be aligned with Sg
1
. For example, Candidates of

networks 𝐴 and 𝐵 of Figure 1 are shown in Figure 4(b) and
those Candidate-Collections are shown in Figure 4(c).

In Step 2(c), two seeds (i.e., Candidate-Collections
CC(Sg

𝑖
) and CC(Sg

𝑗
)) are merged in order to produce a
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Figure 4: (a) BLAST bit scores for proteins of networks𝐴 and 𝐵 shown in Figure 1. (b) All possible Candidates of size one of networks𝐴 and
𝐵. (c) All possible Candidate-Collections of size one for networks 𝐴 and 𝐵.

new seed (new-CC) where its size is sum of sizes of CC(Sg
𝑖
)

and CC(Sg
𝑗
). Figure 5 illustrates two Candidate-Collections,

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒-𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
2

and 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒-𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
3
, of

Figure 4(c) and the result of merging them.
The important problem in this step is discovering the fea-

sible combining pattern to find pairs ofCandidate-Collections
where merging them generates high score Candidate-
Collections. In order to find high score Candidates and avoid
complex searches, combining pattern formergingCandidate-
Collections should produce Candidates with more conserved
edges. Hence we use hierarchical clustering as combining
patterns [25]. Hierarchical clusters are generally constructed
by generating a sequence of partitions where each subcluster
belongs to one supercluster in its entity.

In hierarchical clustering we should determine how the
distance between two clusters is computed. If 𝑆

𝑖
= (𝑉


𝑖
, 𝐸


𝑖
)

and 𝑆
𝑗
= (𝑉


𝑗
, 𝐸


𝑗
) are subgraphs of 𝐺

1
= (𝑉
1
, 𝐸
1
), the distance

between two Candidate-Collections CC(𝑆
𝑖
) and CC(𝑆

𝑗
) is

computed, using the following formula:

dis (CC (𝑆
𝑖
) ,CC (𝑆

𝑗
)) =


𝑉


𝑖


+

𝑉


𝑗



∑V∈𝑉
𝑖

∑
𝑢∈𝑉


𝑗

(𝑎V,𝑢/𝑒V,𝑢)
. (1)

In this equation, 𝑎V,𝑢 is equal to one if there is an edge
between vertices 𝑢 and V; otherwise it is zero, and 𝑒V,𝑢 is the
negative logarithm of probability of interaction between two
proteins V and 𝑢 in the graph 𝐺

1
. We use the hierarchical

clustering obtained based on formula, as the combining
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pattern for merging Candidate-Collections. Cardinality of
newCandidate-Collections obtained in higher levels of hierar-
chical clustering tree is increased exponentially as a result of
merging smallerCandidate-Collections, so we have to save the
Candidates with highest score and discard Candidates with
low scores. In Step 2(c) we use a multiobjective optimization
technique for finding the highest score Candidates [26]. The
highest score Candidates are obtained by sorting Candidates
based on two criteria, first, Nodes-Scores; next, Structural-
Scores. Finally, the Candidates with the highest scores are
chosen in each step. Following, we describe this scoring
schema.

Node-Score. Node-score of each Candidate 𝐶 = LA
𝐺
1
,𝐺
2

(Sg
1
,

Sg
2
,𝑀) is obtained by using the following equation:

NodeScore (𝐶)

=

|Sg1|

∑

𝑖=1

BLASTBitScore (Sg𝑖
1
,MV (Sg𝑖

1
,𝑀)) .

(2)

In this equation, 𝑖 is an iterator on vertices of Sg
1
and Sg𝑖

1
is the

𝑖th vertex of Sg
1
; MV(V,𝑀) indicates a vertex of Sg

2
mapped

into V ∈ Sg
1
by the mapping𝑀.

Structural-Score. Due to the existence of hubs and small
words in biological networks, certainly the network contains
bridges. Bridges are considerable edges, which take part
in most of the paths (specifically conserved paths) in the
networks. Because of the importance of bridges, if Sg

1
=

(𝑉


1
, 𝐸


1
) is a subgraph of 𝐺

1
= (𝑉
1
, 𝐸
1
) and Sg

2
= (𝑉


2
, 𝐸


2
) is a

subgraph of 𝐺
2

= (𝑉
2
, 𝐸
2
), the structural scoring function

for each Candidate 𝐶 = LA
𝐺
1
,𝐺
2

(Sg
1
, Sg
2
,𝑀) is defined as

follows:

StructuralScore (𝐶)

= ∑

V∈𝑉
1

∑

𝑢∈𝑉


1

(𝑓 (V) × 𝑓 (𝑢))
𝛼

× (𝑃
𝐺
1
(V, 𝑢) 𝑃

𝐺
2
(MV (V,𝑀) ,

MV (𝑢,𝑀)))
1−𝛼

.

(3)

In this equation, 𝑓(𝑖) shows the number of conserved edges
at vertex 𝑖 in the subgraph Sg

1
; 𝛼 is a constant value between 0

and 1 and shows the importance of adjacent vertices degrees;
𝑃
𝐺
(𝑥, 𝑦) is the probability of interaction between protein 𝑥

and protein 𝑦 in the network G.
As mentioned before, to control the exponential growth

of the cardinality of Candidate-Collections in combining
process, we use a multiobjective optimization method on
node score and structural score, as optimization objectives. In
this way, after creating each Candidate-Collection among all
Candidates obtained in that, we select only a limited number
of Candidates (based on upon scoring functions) and dis-
card others. Obtained Candidate-Collections of Hub-Clusters
are named Final-Candidate-Collections which contain Final-
Candidates (Candidates of Hub-Clusters).

After creating all Final-Candidate-Collections, in Step 3
of Pin-Align Algorithm, an Initial Similarity Bipartite Graph
ISBG(𝐺

1
, 𝐺
2
) = (𝑉

1
, 𝑉
2
, 𝐸) is created which consists of

vertices of 𝐺
1
= (𝑉
1
, 𝐸
1
) as its first part and vertices of 𝐺

2
=

(𝑉
2
, 𝐸
2
) as its second part, and 𝐸 is a set of weighted edges

between 𝑉
1
and 𝑉

2
. The weight of each edge represents the

similarity between its incident vertices. Let𝐶(V
𝑖
, 𝑢
𝑗
) be a set of

all Final-Candidates which maps V
𝑖
into 𝑢

𝑗
. In ISBG(𝐺

1
, 𝐺
2
),
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Figure 6: (a) The Initial Similarity Bipartite Graph (ISBG) between networks 𝐴 and 𝐵 in Figure 1 (the weights of edges are hidden for
simplicity). (b) The ISBG, with duplication of first part. (c) Graph𝑀

1
, obtained from first part of duplicated ISBG by performing Hungarian

algorithm.

theweight of an edge 𝑒 = {V
𝑖
, 𝑢
𝑗
}, where V

𝑖
∈ 𝑉
1
and 𝑢
𝑗
∈ 𝑉
2
, is

equal to zero if |𝐶(V
𝑖
, 𝑢
𝑗
)| = 0; otherwise this weight is defined

by the following formula:

𝑊(V
𝑖
, 𝑢
𝑗
) = (NodeSim (V

𝑖
, 𝑢
𝑗
) +NeighborhoodsSim (V

𝑖
, 𝑢
𝑗
))

×
1


𝐶 (V
𝑖
, 𝑢
𝑗
)


,

(4)

where NodeSim(V𝑖, 𝑢𝑗) is the similarity between two proteins
V
𝑖
and 𝑢

𝑗
and it is calculated by using the following formula:

NodeSim (V
𝑖
, 𝑢
𝑗
) = BLASTBitScore (V

𝑖
, 𝑢
𝑗
) ×


𝐶 (V
𝑖
, 𝑢
𝑗
)

,

(5)

NeighborhoodsSim(V𝑖, 𝑢𝑗) is the similarity between conserved
neighborhoods of V

𝑖
and 𝑢

𝑗
and is calculated as follows:

NeighborhoodsSim (V
𝑖
, 𝑢
𝑗
)

= ∑

𝑐∈𝐶(V
𝑖
,𝑢
𝑗
)

∑

(V
𝑖
,𝑢


𝑗
)∈CN

𝑐
(V
𝑖
,𝑢
𝑗
)

BLASTBitScore (V
𝑖
, 𝑢


𝑗
) . (6)

Let 𝑁
𝐺
(V) be the set of all neighbors of V (𝑁

𝐺
(V) = {𝑢 ∈

𝑉 (𝐺) | 𝑢V ∈ 𝐸(𝐺)}); then CN
𝑐
(V
𝑖
, 𝑢
𝑗
) for Candidate 𝑐 =

LA
𝐺
1
,𝐺
2

(Sg
1
, Sg
2
,𝑀) is

CN
𝑐
(V
𝑖
, 𝑢
𝑗
) = {(V

𝑖
,MV (V

𝑖
,𝑀)) | V

𝑖
∈ 𝑁
𝐺
1

(V
𝑖
)} . (7)

An Initial Similarity Bipartite Graph for networks 𝐴 and 𝐵

in Figure 1 is shown in Figure 6(a). After creating the Initial
Similarity Bipartite Graph (ISBG), we can find just a single
mapping for each vertex by finding maximum matching in

this graph.Themaximummatching can be found by applying
the Hungarian algorithm (with polynomial time complexity)
on the ISBG [27].

As mentioned, this approach can find just a single
mapping for each vertex, although it cannot support some
evolutionary functions such as duplication and diversion.
To support duplication and diversion, we should consider
matching of a single vertex from one part into two vertices
of other parts in the ISBG. This type of matching is named
DMatch. In other words, DMatchs are paths with length 2
such as 𝑃(V

𝑖
, V
𝑗
, V
𝑘
) in the ISBG which aligns V

𝑗
from one

graph into both V
𝑖
and V

𝑖
from another graph. Here the

problem is to find a set ofMatchs andDMatchs from the ISBG
where sum of their weights is maximum. This problem is
named Maximum Weighted DMatching. To decrease the size
of the solution space of this problem, we decrease the size
of edge set of the ISBG by deleting some edges. The above
procedure is performed by Algorithms 2 and 3.

Algorithm 2 gives the ISBG as input and creates the Final
Similarity Bipartite Graph. In Steps 1–4 of Algorithm 2 all
vertices of one part of the ISBG are duplicated and each
duplicated vertex is connected to all vertices conjunct to the
main vertex with the same weight as shown in Figure 6(b);
then the Hungarian algorithm is performed on this graph in
Step 5 of Algorithm 2. Obtained bipartite graph is named𝑀

1
.

The result of these steps for ISBG of Figure 6(a) is shown in
Figure 6(c). All duplicated vertices of𝑀

1
aremerged together

in Step 6 of Algorithm 2. In Steps 7–12 of Algorithm 2,
the same process is implemented on the other part of the
obtained ISBG and thematching𝑀

2
is obtained. Figures 7(a)

and 7(b) illustrate these steps for ISBG of Figure 6(a). Step 13
of Algorithm 2 combines 𝑀

1
and 𝑀

2
to create Sim

𝐺
as the

Final Similarity Bipartite Braph as shown in Figure 7(c).
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Input: Initial-similarity-bipartite-graph 𝑆 = (𝑆
1
, 𝑆
2
, 𝐸
𝑆
)

Output: Graph Sim
𝐺

(1) Bipartite-graph 𝑆𝐷
1
= 𝑆

(2) for all vertex V ∈ 𝑆
1
do

(3) Duplicate V in 𝑆𝐷
1

(4) end for
(5) Bipartite-graph 𝑀

1
=Maximum-Weight-Matching(𝑆𝐷

1
)

(6) Merge duplicated vertices of 𝑆𝐷
1
in𝑀
1

(7) Bipartite-graph 𝑆𝐷
2
= 𝑆

(8) for all vertex V ∈ 𝑆
2
do

(9) Duplicate V in 𝑆𝐷
2

(10) end for
(11) Bipartite-graph 𝑀

2
=Maximum-Weight-Matching(𝑆𝐷

2
)

(12) Merge duplicated vertices of 𝑆𝐷
2
in𝑀
2

(13) Bipartite-graph Sim
𝐺
= 𝑀
1
∪ 𝑀
2

(14) return Sim
𝐺

Algorithm 2: Find Sim
𝐺
Graph.

Input: Sim
𝐺
Graph𝑀

Output: Final Alignment
(1) for all edge {V

1
, V
2
} ∈ 𝑀 do

(2) if 𝑑𝑒𝑔(V
1
) = 1 and 𝑑𝑒𝑔(V

2
) = 1 then

(3) 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑅𝑒𝑠𝑢𝑙𝑡 ∪ {V
1
, V
2
}

(4) 𝑀 =𝑀 \ {V
1
, V
2
}

(5) end if
(6) end for
(7) 𝐷𝑀𝑎𝑡𝑐ℎ = 𝜙

(8) 𝑃
1
= first part of𝑀

(9) 𝑃
2
= second part of𝑀

(10) for all vertex V ∈ 𝑃
1
do

(11) 𝑒
1
= first edge connected to V

(12) 𝑒
2
= second edge connected to V if 𝑑𝑒𝑔(V) > 1

(13) 𝑒
3
= third edge connected to V if 𝑑𝑒𝑔(V) > 2

(14) if 𝑑𝑒𝑔(V) = 2 then
(15) 𝐷𝑀𝑎𝑡𝑐ℎ𝑠 =𝐷𝑀𝑎𝑡𝑐ℎ𝑠⋃(V, 𝑒

1
, 𝑒
2
, weight(𝑒

1
) + weight(𝑒

2
))

(16) end if
(17) if 𝑑𝑒𝑔(V) = 3 then
(18) 𝐷𝑀𝑎𝑡𝑐ℎ𝑠 = 𝐷𝑀𝑎𝑡𝑐ℎ𝑠⋃(V, 𝑒

1
, 𝑒
2
, weight(𝑒

1
) + weight(𝑒

2
))

(19) 𝐷𝑀𝑎𝑡𝑐ℎ𝑠 = 𝐷𝑀𝑎𝑡𝑐ℎ𝑠⋃(V, 𝑒
1
, 𝑒
3
, weight(𝑒

1
) + weight(𝑒

3
))

(20) 𝐷𝑀𝑎𝑡𝑐ℎ𝑠 = 𝐷𝑀𝑎𝑡𝑐ℎ𝑠⋃(V, 𝑒
2
, 𝑒
3
, weight(𝑒

2
) + weight(𝑒

3
))

(21) end if
(22) end for
(23) SortByWeight (𝐷𝑀𝑎𝑡𝑐ℎ𝑠)
(24) for all 𝑑𝑚 ∈ 𝐷𝑀𝑎𝑡𝑐ℎ𝑠 do
(25) if (𝑑𝑚 ∩ 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝜙) then
(26) 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑅𝑒𝑠𝑢𝑙𝑡 ∪ 𝑑𝑚

(27) end if
(28) end for
(29) return 𝑅𝑒𝑠𝑢𝑙𝑡

Algorithm 3: Find final alignment.

It can be proven that Maximum Weighted Dmatchings
of graph Sim

𝐺
are exactly similar to Maximum Weighted

Dmatchings of ISBG. So Sim
𝐺
contains all edges ofMaximum

Weighted Dmatching and the degree of its vertices is at
most 3. For this reason obviously the solution space of

the Maximum Weighted DMatching problem on Sim
𝐺

is
considerably decreased in comparison with the ISBG.

To find the final alignment using the graph Sim
𝐺
, we

use a greedy algorithm with polynomial time complexity as
shown in Algorithm 3. Algorithm 3 gives the Final Similarity
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Figure 7: (a) The ISBG between networks 𝐴 and 𝐵 in Figure 1, with duplication of second part. (b) Graph 𝑀
2
, obtained from second part

duplicated ISBG by performing Hungarian algorithm. (c) The Final Similarity Bipartite Graph (sim
𝐺
) for networks 𝐴 and 𝐵.

Bipartite Graph Sim
𝐺
(obtained by Algorithm 2) as input

and matches all pairs of adjacent vertices where degree of
both of them is one. For other vertices, Algorithm 3 creates
all possible Dmatchs and selects them in a greedy manner.
Algorithm 3 utilizes the following steps for all vertices of
graph Sim

𝐺
.

(1) If the degree of the vertex V is one and degree of
adjacent vertex is also one, these two vertices are
assigned to each other.

(2) If the degree of the vertex V is two and V is adjacent to
V
𝑖
and V
𝑗
, the path 𝑃(V

𝑖
, V, V
𝑗
) is created as a potential

Dmatch.

(3) If the degree of the vertex V is three and V is adja-
cent to V

𝑖
, V
𝑗
, and V

𝑘
, potential Dmatchs 𝑃(V

𝑖
, V, V
𝑗
),

𝑃(V
𝑖
, V, V
𝑘
), and 𝑃(V

𝑗
, V, V
𝑘
) are created.

The weight of a given DMatch can be calculated by the
following formula:

𝑊(𝑃 (V
𝑖
, V, V
𝑗
)) = 𝑊(V

𝑖
, V) + 𝑊(V, V

𝑗
) . (8)

After creating all potential DMatchs, we sort them based
on their weights; then in a successive rounds we choose the
highest weight DMatchs 𝑃(V

𝑖
, V, V
𝑗
) and delete all other edges

connected to V
𝑖
, V, or V

𝑗
. By this way all assignments are found

and finally the local alignment of two graphs is obtained
in Steps 24–27 of Algorithm 3. Therefore the output of this
algorithm is the final alignment between two given graphs
𝐺
1
and 𝐺

2
. The final alignment between networks 𝐴 and 𝐵

in Figure 1 is shown in Figure 8.
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Figure 8: Final alignment between networks 𝐴 and 𝐵.

3. Results

In this section, we intend to compare our algorithm to other
well-known local alignment algorithms (NetworkBLAST [9],
MaWISh [10], Graemlin [11], and Graemlin 2.0 [13]), in a
way that Graemlin 2.0 compares its results, because it is the
onlymethod that compares results of all local alignment tools
against KEGG Ortholog (KO) groups [22] on different data
sets. The data sets contain the PPI networks data from SNDB
[21] for the organism pairs (E. coli, S. typhimurium) and (E.
coli, C. crescentus), PPI networks data from DIP [20] for the
organism pair (human, mouse), and data from IntAct [19]
database for the organism pair (yeast, fly). The comparison
is proceeded based on specificity and sensitivity in terms
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Table 1: Results of Pin-Align algorithm on four pairs of PPI networks, using different percentages in hub clustering step (Step 1).

Percentage 𝐶eq 𝐶node 𝐶or Tot

(E. coli, S.
typhimurium)

60% 0.95 0.93 1651 1779
70% 0.95 0.94 1723 1835
80% 0.95 0.94 1773 1890
90% 0.95 0.94 1782 1905

(E. coli, C.
crescentus)

60% 0.87 0.84 666 794
70% 0.89 0.86 665 772
80% 0.88 0.85 693 811
90% 0.89 0.87 764 876

(Human,
mouse)

60% 0.78 0.72 217 299
70% 0.82 0.78 248 316
80% 0.78 0.73 226 309
90% 0.82 0.78 258 329

(Yeast, fly)

60% 0.87 0.85 258 303
70% 0.89 0.87 280 323
80% 0.91 0.88 350 396
90% 0.91 0.89 416 466

Table 2: PPI networks from SNDB for the organism pairs (E. coli, S. typhimurium) and (E. coli, C. crescentus).

(E. coli, S. typhimurium) (E. coli, C. crescentus)
𝐶eq 𝐶node 𝐶or Tot 𝐶eq 𝐶node 𝐶or Tot

NB 0.77 0.49 457 1016 0.78 0.50 346 697
Gr2.0 0.95 0.94 627 667 0.79 0.78 447 573
MW 0.84 0.64 1309 2050 0.77 0.54 458 841
Gr2.0 0.97 0.96 1611 1678 0.77 0.76 553 727
Gr 0.80 0.77 985 1286 0.69 0.64 546 847
Gr2.0 0.96 0.95 1157 1217 0.82 0.81 608 750
Pin-Align 0.95 0.94 1782 1905 0.89 0.87 764 876

of KO groups introduced in Graemlin 2.0 [13]. In short—
as Graemlin 2.0 defined—to uniquely specify an alignment,
the mapping should be transitive; that is, if protein 𝐴 is
aligned with proteins 𝐵 and 𝐶, then protein B must also
be aligned with protein 𝐶. Mathematically, this means that
the mapping is an equivalency relation, so groups of aligned
proteins are referred to as equivalence classes. An equivalent
class is defined as correct if all protein members in the class
are in the same KO group. To measure specificity, Graemlin
2.0 computed two metrics:

(1) the fraction of equivalence classes that were correct
(𝐶eq),

(2) the fraction of nodes that were in correct equivalence
classes (𝐶node),

and to measure sensitivity, it computed two metrics:

(1) the total number of nodes that were in correct
equivalence classes (𝐶or),

(2) the number of equivalence classes that contained 2
species (Tot).

As we described in Step 1 of the Pin-Align algorithm,
Pin-Align chooses some vertices as hubs whose degrees are
greater than about 95% of total vertices. For networks S.
typhimurium, C. crescentus, human, and yeast, Pin-Align
chooses vertices as hubs in a way that their degrees are greater
than 264, 126, 16, and 23, respectively. The reason why these
degrees are greater than 95 percent of total vertices degrees
is clear from cumulative frequency of their vertices degrees
which is shown in charts of Figure 9. For example, in the
PPI network of S. typhimurium the degrees of about 95%
of vertices are less than 264, so in this network we choose
vertices with degrees greater than 264 as hubs.

Table 1 showsPin-Align results with different hub degrees.
Column two of this table (percentage column) contains
different percentages which are used for hub clustering step
(Step 1).

The results of the algorithms are demonstrated in Tables
2 and 3. In these tables NB stands for NetworkBlast, MW for
MaWISh, Gr for Graemlin, and Gr 2.0 for Graemlin 2.0.They
show that Pin-Align is the most specific and sensitive aligner
in comparison with other alignment tools like NetworkBlast,
MaWISh, Graemlin, andGraemlin 2.0. Because Graemlin 2.0
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Table 3: PPI networks from DIP and IntAct for the organism pairs (human,mouse) and (yeast, fly).

(Human,mouse) (Yeast, fly)
𝐶eq 𝐶node 𝐶or Tot 𝐶eq 𝐶node 𝐶or Tot

NB 0.33 0.06 65 1010 0.39 0.14 43 306
Gr2.0 0.83 0.81 228 281 0.58 0.58 155 267
MW 0.59 0.36 87 241 0.45 0.37 10 27
Gr2.0 0.88 0.86 181 210 0.90 0.91 20 30
Gr 0.59 0.53 108 203 0.33 0.29 35 122
Gr2.0 0.86 0.84 151 179 0.61 0.61 57 93
Pin-Align 0.82 0.78 258 329 0.91 0.89 416 466
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Figure 9: Cumulative frequency of vertices degrees in networks of S. typhimurium, C. crescentus, human, and yeast.

for each of its comparisons to other local aligner removed
equivalence classes of its output that did not have a node
in common with output of another local aligner, we have
different results of Graemlin 2.0. Graemlin 2.0 did this due
to considerations of local aligners to nodes in conserved
modules and global aligners to all nodes.

In Table 2, we use the PPI network data from SNDB for
the organism pairs (E. coli, S. typhimurium) and (E. coli, C.
crescentus). In Table 3 we use the PPI networks data fromDIP
and IntAct for the organism pairs (human,mouse) and (yeast,
fly).

Figure 10 shows that Pin-Align also finds more correct
equivalence classes than NetworkBlast, MaWISh, Graemlin,
and Graemlin 2.0. By considering all the above results and

comparing Pin-Align to the other algorithms, it is evident that
Pin-Align is more accurate in most cases based on the 𝐶eq,
𝐶node, 𝐶or, and Tot measures.

4. Conclusions

In this paper, we presented Pin-Align, a pairwise local
network alignment to improve accuracy of the alignment.
Pin-Align algorithm ismainly designed based on the dynamic
programming approach and has specificity and sensitivity
comparable with existing tools such asNetworkBlast, Graem-
lin, Graemlin 2.0, and MaWISh. Our novel scoring system
is based on bridges which are considerable edges due to the
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Figure 10: The number of correct equivalence classes that are found in alignment of organism pairs (E. coli, S. typhimurium), (E. coli, C.
crescentus), (human,mouse), and (yeast, fly) by Pin-Align, in comparison with Graemlin 2.0, Graemlin, MaWISh, and NetworkBlast.

existence of hubs and small words in biological networks
which certainly contain bridges. Bridges take part in most of
the paths and consequently conserved paths in the networks.
In future work, we plan to extend this approach to multiple
network alignment.
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